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We consider the spatially homogeneous and isotropic Boltzmann distribution 
function in the case of nonisotropic, binary cross sections inversely proportional to 
the relative speed of  the colliding particles. Further, we allow the angle dependence 
of  the differential cross section qS(•) to be singular in the forward direction (K --~ 0). 
We assume ~o qS(~c)sin3K dtc < oo, which includes the case of  a Maxwellian 
interaction. We explicitly show how to construct the solutions of  the Boltzmann 
equation, study their properties, and obtain for a class of  solutions sufficient 
conditions for their existence at any positive time value. We extend the formalism 
to the more general case of  arbitrary dimensionality. We observe an effect noticed 
previously by Krook, Wu, and Tjon in other models of  the Boltzmann equat ions--  
namely, for special initial distributions, we find solutions which exhibit an excess of  
higher energy particles at later time. 

KEY W O R D S :  Boltzmann equation; Maxwellian interaction; relaxation 
to equilibrium; long-tail effect. 

1. INTRODUCTION 

After the discovery by Bobylev, ~1~ Krook and Wu, (2) and Ernst ~31 of particular 
solutions of  the Boltzmann equation with a Maxwellian interaction, it 
appeared that in the isotropic case a general formalism could be established 
for the explicit construction of the solutions as well as for the determination of 
sufficient existence conditions. ~4,s) 

The key point was the possibility to determine a nonlinear differential 
system for the moments  of  the homogeneous and isotropic distribution 
function f (v ,  t), where v is the velocity. This was first shown t2) for the 
normalized moments  Mn(t), which are equal to one for a pure Maxwellian 
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distribution, in the particular case where ~b(~c), the angle-dependent function 
of the differential cross section, is isotropic. Later Ernst, (3) in the nonisotropic 
case, when the long-range part  of  the potential is cut off such that 
~o ~b(~c) sin ~c d~c is finite, extended the determination of the nonlinear system 
for the M.(t) as well as for the Laguerre (or Sonine) moments  b.(t). 

However, the realistic case corresponds to singular ~b(~c) functions; for 
instance, in the Maxwellian interaction case (6) qb(K) -~ ~ 0  to-5/2. Here 2 we 
want (7) to determine the general formalism when ~b(~:) is singular but 
~o sin3 ~c~b(~:) d~c is finite. 

In Section 2, we determine the nonlinear system satisfied by the Laguerre 
moments b,(t) by two methods. In the first one, we introduce the moments 
M,(t) as an intermediate step, whereas in the second one we consider directly 
the moments b,(t). 

In Section 3, we establish the general properties of the Laguerre moments 
which can be obtained recursively from the solutions of  a nonlinear system. 
We find two different classes, for which we introduce the arbitrary constants 
at infinite time or at zero time, respectively. In the first class we recover the 
Bobylev (1) class of  particular solutions, where the b,(t) decrease like the terms 
of a geometrical series. However the positivity property for the sum of the 
Laguerre seriesf(v, t) at t = 0 is not easy to control. In the second class, the 
number of  time dependences of  the b,(t) increases with n, and the positivity of  
f(v, 0) is introduced directly with the sets {b,(0)}. For  instance, starting from 
the generating functional of  the Laguerre generalized polynomials, we can 
construct a class of  distribution functionsf(v, 0) written in closed form in such 
a way that the positivity appears clearly. 

In Section 4 we establish sufficient conditions on the Laguerre moments 
at t = 0 such that the sums of the Laguerre series exist for t e [0, oo]. The 
problem is much more difficult than in the isotropic case and we consider two 
cases, depending upon whether or not qS(~c) is more singular than •-2 when ~c 
--, 0. We also give arguments concerning the positivity o f f ( v ,  t) at t > 0 
deduced from positive initial distribution function f(v, 0). 

In Section 5, we extend the results of the previous sections obtained in the 
three-dimensional space to the more general case of  arbitrary dimensionality. 

In Section 6, as an illustration, we present some numerical results for 
f(v, t) corresponding to the Maxwell interactions with different initial 
conditions and different dimensions of the space. 

In this way we observe an effect obtained previously both by Krook and 
Wu ~z) in another Boltzmann model and by Tjon (s~ in a two-dimensional case 
with isotropic 4~(K). The Tjon model is that of  Tjon and Wu (91 but with 
different initial conditions. For different dimensional cases, we find that there 

2 A brief preliminary account of the results was presented in Ref. 7. 
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exist part icular  initial distributions such that  at later time the distribution 
functions exhibit states with an overpopula t ion  of  higher velocity particles. 

2. N O N L I N E A R  DIFFERENTIAL  S Y S T E M  SATISF IED 
BY THE B O L T Z M A N N  M O M E N T S  

We start with the homogeneous  Bol tzmann equat ion and look for its 
isotropic solutions. We use the notat ions of  Ref. 2, and assume for the elastic 
binary collisions, i.e., 

V -Jr W = V '  -~ W ' , / ) 2  ..{_ w2 = IVI2 + iwle = (v,)2 + (w,)2 = iV,12 + iW,lZ 

that  the differential cross section o is of  the form a = ~b(~c)(jV - W])-  1, with K 
the scattering angle, q~(~) ~> O. We have 

l ff at = ~ [f(v', t)f(w', t) - f(v, t)f(w, t)J~b(tc) dW df~ 

d~  = sin ~c d~c& (1) 

(v') 2 -- v 2 + (w 2 - v 2) sin 2 �89 + vw sin K sin 0 cos 

(w') 2 = w 2 + (v z - w 2) sin 2 �89 - vw sin K sin 0cos  e 

wheref (v ,  t) is a function of  v = iV] only and 0 is the angle between V and W. 
We introduce the normalized power moments  

M,(t) = 2"n! [(2n + 1)!] -1 f f ( v ,  t)v2OdV 

[M,( t )  -= 1 for a Maxwellian distribution fM,x(V, t) = (27r)-3/2 exp(--V2/2)] 
and multiply both  sides of  Eq. (1) by v 2" dV and integrate;  we obtain a term 
propor t iona l  to (d/dt)M,(t) on the lhs and want to find on the rhs, as in the 
isotropic (2-~~ case qS(K) _= 1, a functional  of  the moments  M,(t). In the case 
where ~b(K) is not  too singular, such that  the quant i ty  ~b o = �89 ~ sin ~4~(~c) dK is 
finite, Ernst,  (3) using a generalization o f  the Bobylev ~a) method,  obta ined a 
nonlinear  system for the moments  M,(t). However ,  here we allow 4~0 to be 
infinite in such a way that  only the difference of  the two terms on the rhs of  Eq. 
(1) has a meaning.  Using s tandard techniques like those o f  K r o o k  and Wu,  (2) 
carefully taking advantage of  the minus sign on the rhs, we get 

(2n + 1), d f o  { ~  { f / r  { f f  2"nl. dt M n  = f(v, t)f) 2 f(w, t )w  2 2 ~c sin 0 
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After integration over E, 

f E(v') " v 2 ~  ~c 2 
Fc~0 

and we require the less restrictive condition 

fo : sin3 Kq~(K) < oO (2) dK 

Notice that (2) is fulfilled for Maxwellian molecules, since q~(K) -~ (sin K) 5/2 
at small diffusion angles, although ~b o does not exist. 

The successive integrations are then similar to the isotropic case and we 
find 

dt M.(t) = MkM~_kBk,.C. k, C. k = n! [k! (n - k)!] -1 
k=O 

1 f l  ( K ) 2 n - 2 k ( 2 )  2k 
Bk,. = ~ q~Oc)(sin to) cos ~ sin dK, k = 1, 2.. . ,  n (3) 

B o , . = ~ P ( t c ) ( s i n K ) [ ( c o s 2 ) Z " - l l d K  

We introduce the Laguerre (or Sonine) moments b.(t): 

b.= ~ (--1)"+kC.kMk, Mk= ~ C.kbk (4) 
k - O  k=O 

so that f has the expansion 

exp ~ (2~)3/2f(v, t) = ( -  1)"b.(t)L~l/2~(v2/2) (5a) 
0 

and want to obtain from Eq. (3) the corresponding system for the b. when ~b o 
may be infinite. The finite 40 case was considered by Ernst. (3) We differentiate 
(4) and obtain, using (3) and (4), 

d b. ~ bqbr q', n) 
dt q = 0  q ' = 0  

n k~p-q' 
2(q,q',n) ~ (_l).+vC p ~ k q q' = Bk,pC p Ck Cp-k 

p = q + q '  k=q 
In Appendix A1 it is shown that 2 - 0 unless q + q' = n, so that we finally find 

d 
b. ~ bqb. qBq.C. ~ (5b) 

dt q=O 
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An alternative derivation of (5b) does not require the introduction of 
moments M.(t) as intermediate tools: substituting expansion (4a) for f(v, t) 
into the Boltzmann equation and projecting on the nth Laguerre polynomial, 
we get Eq. (4b) by using explicitly the specific properties of the Laguerre 
L(.~)(x). The proof is sketched in Appendix A2. 

3. GENERAL PROPERTIES OF THE S O L U T I O N S  
OF THE N O N L I N E A R  S Y S T E M  

In Eqs. (5a) and (5b) we introduced the constraints due to the 
conservation laws of mass (M o - 1, b 0 ---=- 1) and energy (M I -- 1, bl -= 0). 
Define an = b. + 2, n ~> 0, for the remaining nontrivial Laguerre moments, x 
= v2/2 as a new variable, and 

F(x = v2/2, t) = [exp(v2/2)](2n)3/af(v, t) 

as a new function. We obtain 

F(x, t) = 1 + ~ ( -  1)"a.(t)L(.a/+2~(x) (6a) 
0 

d n-2 
_ _  ( ~ r n  + 2 (6b) dt a.(t) + fl.a.(t) = ~ amG m_eBm+2,n+2,~n+2 

m=O 

with 

fin ~--Bo,n+2 - -  Bn+2,n+2 

= ~ ; dK qS(K,(sin ~c)[1 - (cos 2)a"+'~ - (sin ;--)1"+4] 

The problem is reduced to the resolution of the nonlinear system (6b) and the 
substitution of the solutions a.(t) into the Laguerre expansion (6a) to build 
F(x, t ). 

3.1. In t roduct ion of the M o m e n t s  of r 

We remark that all the B,... are not independent. It is convenient to define 
a set of moments of ~b(K) in such a way that the coefficients of (6b) can be 
rewritten as a linear combination of them. We define 

22n(n !) 2 1 f ]  
(2n + 1)! ~b. = ~ (sin K)2"+ lq~(~c) dK, n = 0 , 1 , 2  .... (7) 

normalized in such a way that qS. - I if q5 - 1. Now, ~b o does not appear in Eq. 
(6b), whereas the condition (2) implies q~. < oe Vn ~> 1. In Eq. (6b) the 
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coefficients /~, of a, ,  Bm+2,n+ 2 -b B . . . .  +2 of aman_2_m, and Bn/2+l,n+ 2 Of 
an~22 _ 1 if n is even, can be written in terms of these qS, and in Appendix B1 we 
obtain 

[,/2[+1 (n + i - p ) !  p! 
f i , = - ( n + 2 )  ~ ( - 1 ) P ( n + 2 _ 2 p ) ! ( 2 p + l ) ! ( 9  p 

p = l  

[,/21-m- 1 ( __ 1)P 
Bm+ 2,,+ 2 + B , -m , ,+  2 = (n - 2m - 2) ~ P! 22 p 

p = O  

( n - 2 m - p - 3 ) !  [ ( p + m + 2 ) ! ]  2 
x (~ f2~m - -2  ~ 2 ~ !  (2p + 2m + 5)! q~p+m+2 

[(n/2 + 1)[] 2 ~bn/2+l, r/ even (8) Bn/2+l'n+2 "-- (n + 3)! 

with In/2[ = n/2 if n is even and [n/2] = (n - 1)/2 if n is odd. We remark that 
q51 appears only in/~,, i.e., in the linear part of Eq. (6b). 

Let us call L, (a , )  the linear part of the lhs of (6b) and N,(ap),  p <<, n - 2, 
the nonlinear part of the rhs. From the explicit expression of the coefficients 
written down in Eq. (8) we see that L, (a , )  depends on qSa, q52,..., qSt,/z~+l, 
whereas N, depends on q52, q~3 ..... qSt,/2]+l. 

Due to the recursive character of the system (6b), where only the ap withp 
~< n appear on the rhs, we see that a,( t) ,  the nth coefficient of the Laguerre 
expansion (6a), depends only on the first [n/2] + 1 moments 41 ..... qSt,/za+ 1 of 
qS(~:). Consequently, if in Eq. (6a) we stop the expansion at a fixed nth term, 
then the approximate F(x ,  t) solution is the same for all qS(~c) having the same 
moments q~ ,..., ~,b[,/2]+ 1. 

Let us see how the simplest particular Bobylev solution, (1) which is the 
same as that of Krook and Wu, (z) can be deduced from considerations on 
these moments. That solution depends only on qS~ ; consequently, putting to 
zero all the coefficients of ~bp,p # 1, we get N,,(ap) - O, For this solution, the 
nonlinear system degenerates to a linear one and from L, (a . )  = 0 we obtain 

a,(t)  = a,(0) e x p [ - ~ ( n  + 2)tq51] 

where the a,(0) are unknown. Returning to Eq. (6b), the coefficients of 
q52, ~b3,... must be identically zero. From Eq. (8) and requiring that the 
coefficient of q~2 in L, (a , )  and N,(ap)  are the same, we get 

a,(O) = - a o ( O ) a ,  2(0)(n + 1)(n - 1) -1 

Similarly, since the coefficient of ~b 3 is the same in Lg(a4) and N4(ap), we obtain 
4ao(0)3 + al(0) 2 =  0. Defining a o ( 0 ) = - c  2, c > 0, and a l ( 0 ) =  •  3, we 
deduce 

a,(0) = (+_)"(--1)"+1c"+2(n + 1) 
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with still the ambiguity with regard to the plus or minus sign. Summing the 
Laguerre series (6a), we obtain for the sum 

(1T-c)-5/2[(1 ~ - -  ~- 52) + v2 c(1 -T- c)- 1] e x p [ ~  c(c -T- 1) -1]  

so that at t = 0 the positivity requires the plus sign and 0 < c ~< 2/5. Finally we 
have the simple Bobylev-Krook-Wu particular solution, which is the unique 
solution depending only on qSa. Later we shall deduce the other Bobylev 
solutions. 

3.2. General  St ructure  of the Solut ions of  Eq. (6b) 

For n = 0 and 1, we integrate directly and get ao(t) = ao(0) exp(-�89 ) 
and al(t) -- a1(0)exp(-�89 for n/> 2 we take into account the nonlinear 
part and obtain 

a2(t ) = az(O ) exp[-(~q51 - ~q52)t ] 

+ 3ao2(0){exp[- (~b 1 - ~5q52)t] - e x p ( -  ~-q51t) } 

and so on. Appearing explicitly in the solutions are not only the moments q~p, 
but also arbitrary integration constants. The general solution can be written 
differently, depending upon whether we integrate from oe or 0. Let us define 
~.(t): 

n - 2  

~i,(t) = (exp fl,t) ~ ama,_2_mBm+2., +2,_..+2~m+2 
0 

and integrate Eq. (6b). We get for a,(t) two possible expressions: 

a,(t) = (exp -tint) d, + ~,(t') dr' (%) 

a,(t)=(exp-fl,t)[a,(O)+ f fi,(t')dt'] (9b) 

where the integration constants d, and a,(0) satisfy the relation ~i, - a,(0) 
= So ft,(t) dr. The validity of Eq. (9a) requires l im,.  00 ft.(t) ~ 0 and we shall 
prove this property. If it is true, then d, = lim t .  ~ a,(t) exp fl.t. The general 
solution ofa,(t) depends on n arbitrary constants, which we can choose among 
{ap(0)},p = 0,..., n - 2, and {@},p = 0 ..... n - 2, with the rule that forp fixed 
we take either ap(0) or (@). If  we retain only one constant different from zero 
for some n = n o , either a,o(0) or 6.o, then we define a particular solution of the 
system. In this way we define two bases. In the first one, each solution element 
is defined by the associated constant a.(0) and we call it the fundamental 
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positive solution because we easily control  the posit ivity of  F(x, 0). In the 
second basis, each solution element is defined by 6, and we call it the Bobylev 
fundamenta l  solution because it was found previously by Bobylev (1) start ing 
f rom an entirely different point  o f  view of  invariance g roup  theory.  

3.3. a.(t) for  n Fixed Decreases at Least Like e x p ( - f l . t )  

F r o m  the definition (6b) of/3, we see that/3 0 > 0 and {/3,} is an increasing 
positive sequence. Now,  for n = 0, 1, a ,  decreases at least like e x p ( - / 3 , 0  and 
assuming that  this p roper ty  holds f o r p  --- 0, 1,..., n - 2 we want  to prove  it for 
n. In Appendix  B2 it is shown that /3,  - / 3 , .  - / 3 , _ , .  z < 0 V m e  [0, n - 2]. It  
follows that  in (9a) and (9b), ~, decreases at least like e x p [ -  t(/3,. +/3,_,._ 2 
- / 3 , ) ]  and in Eq. (9a) we can integrate d, when t -~ oo. It  follows that  the 
p roper ty  is true for  n. Consequent ly  limr_. ~ a,(t)---0 and for  x fixed, 
limz~ ~ F(x, t) = 1, ensuring the Maxwel l ian behavior  for f(v, t). 

3.4. The Solut ions Def ined by {a.(O)} 

Due to ft, > 0 and B,, + 2,n + 2 > 0, the s tudy is very similar to the isotropic 
case. (*'5) The  fundamental positive solutions are such that  only one %_ 1(0) 
r 0, p integer >/1. These solutions are not  necessarily positive for  any t t> 0 
value. However ,  the Laguerre  series for  F(x, 0) has only one te rm and we find 
easily the condi t ion on ap_ 1(0) such tha t  F(x, 0) > 0. This requires at least 
ap_l(O) > 0. We define 7(k) = (k + 1)(p + 1) ,k = 0, 1 ..... anda,=~(k~-2 = Ck; 
substi tuting into Eq. (9), we find for the a,(t) nonidentical ly zero 

Co(t ) = a p _  1 (0) e x p ( -  t f lp_  1) 

ck(t ) = exp( - -  tfl~(k )_ 2) (lOa) 

{ f l  I k ~  1 ' t' ~(q)l dt'} • e x p ( t ' f l e ( k ) _ 2 )  cq(t )Ck_q_l( )Br(q),e(k)C~,(k ) 
l_ 0 

and the ck(t) can be obta ined  recursively f rom Co(t ). When k increases, the 
number  of  terms in c k with different t ime dependences increases also. The 
Laguerre  expansion becomes 

F(x, t) = 1 + ~ Ck(t)(_ ~,1 ~(k)l(1/Z)t,~r(k) '~ ,  
(10b) 

F(x, O) = 1 + ap_ 1(0) ( -  1) p-  lr(1/2)t,,~p + 1 ~.~1 

and so whereas at t = 0 we have only one Lt,~/2)(x), as soon as t becomes 
positive, we have an infinite number  o f  L~,:/2)(x). 

(i) I f  ap_l(O ) > O, then by induct ion we find Ck(t) > 0 and M,(t) > O. 
Further ,  for  k ~ 0 we have dck/dt positive at t = 0 and tending to O- when t 
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-~ ~ ,  whereas Co(t) is always decreasing. Finally we have F(x, 0) > 0 for x 
large enough. 

(ii) I f  % _ 1 ( 0 ) <  0 we obtain ck(t)(--1)k+l > 0 and for k # 0 the 
derivative ( -  1) k+ l(d/dt)ck(t) is positive at t = 0 and tends to 0 -  when t ~ ~ .  
For  x sufficiently large F(x, 0) < 0 and the positivity is violated. 

Can we define an infinite mixing of  these fundamental  solutions in such a 
way that we easily control the positivity ofF(x ,  t) at t = 0? An easy way, as in 
the isotropic case, (5) is to start with the generating functional of the 
generalized Laguerre polynomials 

z'L(~)(x) = (1 - z ) - l - ~  exp[xz / (z  - 1)] 

(Although in this section we consider only ~ : 1/2, the results that we present 
are valid for other ~ values and this freedom will be used later when we 
consider expansions of  Laguerre polynomials with ~ # 1/2.) We first remark 
that any z derivative has a sum written down in terms of Laguerre polynomials 
of  argument x/(1 - z): 

xz \ /  z "~q (~)/ x "~ 
y: c:z.L<:,(x)--(1- exp L. 

n~q 

By linear combinations of  such derivatives of  arbitrary order (such that the 
coefficient of  L~0 ~1 is one and that of  L~ ~) is zero) we get families of  sums of 
Laguerre polynomials written in closed form: 

F(x, O) : L(,~)(x)z" dpC, p 
0 \ p =  0 

X Z  q Z P X 
- ( l - z ) - *  ~ e x p ( ~  ~ d p ( ~ - ~ L ~ ) ( ~  (11) 

< z - i j p : o  \ i - z /  \ l - z /  

where ~ = 1/2, do = 1, d I = - 1 ,  whereas z and dp, p > 1, are arbitrary but 
subject to the constraint that the rhs of  Eq. (11) must be positive. For instance, 
i fdp - 0 fo rp  > 1 we obtain the particular Boby lev -Krook-Wu solution (1'2) 
at t = 0. Another simple family can be obtained by subtracting the generating 
functional for two different z values 

n - 2  

1 - z l z 2  Z L(.~'(x) Z z l " z Y "  2 
n>~2 p=O 

= (z2 - zi)-~[ z~ (1 - zl) 1+~ exp - -  

and so on. 

X Z  1 Z 1 X Z  2 ] 

z l - 1  ( l _ z j l +  e X P z 2 _ l ]  (12) 
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3.5. Solut ions Defined by {~.} 
The fundamental solutions (or Bobylev solutions) are such that only one 

dp_ 1 ~ 0, p integer >~ 1. These solutions were called "pure solutions" in the 
isotropic two-dimensional case/4) They have very interesting properties: (i) 
they were obtained by Bobylev through group-invariance considerations; (ii) 
for any n we have only one time-dependent term, decreasing like the term of a 
geometrical series. 

However, their drawback is that the initial value F(x, 0) is not easily 
expressed in terms of their arbitrary parameters. Consequently for F(x, t), the 
positivity property (or a violation of it) is not easily established. We recall that 
in the isotropic two-dimensional case, ~4) for these pure solutions or for afinite 
mixing of such solutions we have numerically found only one solution, the 
Bobylev-Krook-Wu one, not violating positivity. Here, the fundamental 
difference, in the nonisotropic case, is that we have a new degree of freedom. 
For each pair of (2q)th and (2q + 1)th equations of the system (6b) a new 
moment ~bq appears, One may hope that other positive solutions may be 
obtained, at least for particular values of the qS~, though they may not be 
chosen completely at random, since they are moments of a positive function 
q~(~:). The following discussion shows the difficulty of such a program of 
research; at present we are not able to construct explicitly any positive 
solution (except the BKW) starting from afinite number of c~,. We begin with 
these fundamental solutions; we consider 7(k) as defined previously, define 
a,=~k)_ z = Ck, and substitute into Eq. (9): 

Ck(t) = 6 k exp[--(k + 1)tip lt], c o = dp_ 1 exp(-flp_ 10 (13a) 
k - I  

q=o (13b) 
F(x, t ) =  1 + ~ ( -1~  ~k~p ~,~r,/21~,,~ 

k 

We consider now the mixing of  two pure solutions where only dp, _ ~ ~ 0 and 
6p~ ~ ~ O, pz > p ~ / > l . I f w e p u t  

I( 0)? a,=~dC,~)exp - t  fly, l p l  + 1 + r 
r Pl + 1 (14a) 

0 -~ f l p ~ - l ( P 2  q- 1 )  - -  f l p E - l ( P l  "k 1) 

where the summation on r has an n-dependent number of terms, and 
substitute into Eq. (9), we find that the {d~, ~J} can be determined recursively 

ft. fip~ 1 ~ -4_ -1 Pl -+ 1 r d(, ~) 2 l:~ /"M+2,./(s),4(t) (14b) 
M+Q=n-2  

s+t=r 
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If 0 r 0, the number of different time dependences in a,(t) increases and 
cannot stay finite when n--, m. Now we consider the possibility 0 = 0 or 
flpl-l(P2 q- 1) = flp2-1(Pl q- 1), which can be rewritten with the integral 
representation of  the/~,: 

~J~dtc~(tc)(sintc)f(pl +l)II . (cos2)2(pz+l)-(sin2) 2(pz+I)] 

+ 1}0 
Studying the variation of  the bracket, we find that it is zero identically for 
PlP2 = 2, otherwise it always has the same sign. It follows that forpapz = 2 or 
Pa = 1, Pz = 2, which is called the degenerate case by Bobylev, m there exists 
only one time dependence for a, ,  as for the pure solution. On the contrary, for 
the other case PlP2 :~ 2, due to the positivity of qS(~), then the integrand 
~b(~:) sin tc multiplied by the bracket always has the same sign and 0 --- 0 is 
impossible. We see the role of the positivity of ~b(tc), which forbids the type of 
solution allowed by the algebraic structure of Eqs. (14). We consider nowpl  
= 1 and Pz = 2, where 0 - 0 in Eqs. (14). We find 

(15a) 

ao(t)=~oexp(-t~),  a l ( t )=~lexp(- t@) 

/ 3 , - ~ b a - - ~ - -  6 , =  ~ 6 6 B ,,+2 
m = O  

In Eq. (15b) the coefficients of  6, on the lhs as well as the coefficients of  
6m6n-tn- 2 on the rhs are independent of  q51 and thus the same property holds 
for 6,. If  46o 3 + 612 = 0, we know that 6, is in fact also independent of the 
other ~p and this case corresponds to the particular Bobylev-Krook-Wu 
solution. If  this relation between 6 o and 61 does not hold, then 6,, n ~> 4, 
depends on q~p, p ~> 2, and we get a class of  solutions. Can we manage the 6 o 
and 61 value as well as the ~bp,p ~> 2, in such a way that F(x, 0) > 0 and ~b(s:) 
> 0? The difficulty for F(x, 0) is due to the oscillations of the Laguerre 
polynomials in such a way that it is not easy to characterize the properties of a 
set (6,) leading to a sum of  Laguerre polynomials positive for x > 0. 

4. SUFF IC IENT C O N D I T I O N S  FOR THE EXISTENCE OF 
F(x,t) F R O M  INITIAL C O N D I T I O N S  ON THE SET {a.(0)} 

Formally, Eqs. (5) or (6) generate for every time, solutions of the 
Boltzmann equation in terms of their Sonine expansion. However, the only 
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solution exhibited up to now is the Boby lev -Krook-Wu (BKW) function, and 
one may wonder whether the Sonine expansion really has a meaning. 

In Sections 4.1-4.2, we show that there is an infinite number of initial 
conditions such that the norm of f (v ,  t) in the Hilbert space spanned by the 
Laguerre L1/2(vZ/2) remains uniformly bounded for every (finite or infinite) 
time t. Then, there is an infinite number of  solutions which do not relax to the 
Maxwellian like the BKW. As a consequence, the Sonine expansion is well 
adapted for numerical purposes. 

Another point which is rarely mentioned in the literature is that of the 
positivity of  the solutions: if F(x, 0) is a positive function, does F(x, t) remain 
positive for all positive times? In Section 4.3, we give arguments for this; it 
ensures that there is an infinite number of  positive solutions different from the 
BKW one, and in Section 6 we shall give some examples. 

Taking into account the normalization of the generalized orthogonal 
Laguerre polynomials, the problem is to find conditions on the set {a,(0)} so 
that 

N(t) = ~ a,2(t)2, < ~ ,  Vt ~ [0, ~ ]  (16) 
n=no 

where 2, = F(n + 7/2)/F(n + 3) is the normalization constant of  the (n + 2)th 
r(1/2) Laguerre L, + 2 �9 Comparing with the isotropic case, (5) we shall operate with a 

slight modification. Instead of N(t) let us define 

N(t) = ~ l a , ( t ) l ~ ,  (17) 
n=no 

where n o is such that a,(O) = 0 if n < n o, a,o(0 ) ~ 0, and then a,(t) =- 0 if n 
< no. We try to find conditions on N(0) so that N(t)<<. ~ Vt ~ [0, ~ ] .  
Noticing that bT(t) < NZ(t), we see that we can find conditions such that N(t) 
remains bounded for any t value. We allow ~b(x) to be singular when K ~ 0, 

qS(~c) < c[sin(~c/2)] -2", t / <  2, q51 < oo (18) 

Note  that we can always take c = 1 with a new definition of the time variable t 
tc in Eq. (1) and find for the coefficients of  the nonlinear part  of  the system 

(6b) 

F ( n + 3 )  F ( m + 3 - q )  O ,-~,.+ 2 
m+2,n+2~,. . ,n+2 ~ C 

F ( n + 4 - q )  F ( m + 3 )  

~< consh n "-  a + const2 (19) 

We have two cases, depending on whether i/~< 1, with bounded coefficients of  
the nonlinear part,  or r />  1, where they increase at most like n "-1. 
Consequently, we consider two types of  bounds. 
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4.1. ~/~<1 

We follow essentially the me thod  of  the isotropic case (4'5) and obtain  the 
following result in Appendix  C2: if 

N(0) ~</3.o(n0 + 2)(A2.o+2) -1 (20) 

where A. is a constant  defined in Appendix  C1, then we have for N(t) an 
explicit upper  bound  for  N(t) such that  N(t) <~ N(O). For  each n o value we can 
calculate explicitly the sufficient upper  bound  to be satisfied by N(0). We also 
find a bound  (C5) on [a.(t)t which decreases at least like exp(- /~.ot) .  

4.2. # < 2  

In this case the coefficients o f  the nonlinear  par t  o f  (6b) increase if q > 1, 
whereas /3 ,  also increases if q /> 1. We assume 

0 < cin f < 0(K)[sin(~/2)] 2" < Csu p (18') 

where either cin f or csu p can be chosen 1 following the same remark  as above,  
t--~ Cinft or  t---, Csupt. We find 

ci~f<~/3n(rl-1)(n+N-q)IF(n+R)F(2-rl)-l1-1 ~--2 V(/~ -]- 3 /~) ~ Csup (21) 

or equivalently for  q r 1, 

const l  n " - I  + const 2 ~</3. ~< const3n "-1 + const 4 

and /3. increases like log n for  ~/= 1. Consequent ly  the coefficient 
B,.+ rm+2  o f  the nonlinear  par t  o f  the differential system (6b) does not  2 , n +  2~-~ n + 2 

increase with n more  than/3,  and this fact gives us the possibili ty to control  the 
growth  of  the solutions.  

Let us recall that  for  v/fixed, the/3, are positive and increasing with n. We 
define two constants  r, 0 < r < 1, and R.o such that  

m + 2  Bm+2,.+2Cn+z/fl.< Rno V n ~ > 2 n 0 + 2 ,  Vm~[no,n-2]  (22) 

which can be explicitly determined f rom both  the upper  bound  in (19), c being 
Csu p, and the lower bound  in (21) containing ci.f. O f  course R.o depends on q. 
F r o m  the explicit representat ion,  Eq. (9b), o f  the solutions an(t ) we find the 
following result in Appendix  C3 : if N(0) is such that  

N(0) ~< (1 - r)/4a2.o+zR.o (23) 

it follows that  N(t) is bounded  

1 - [1 - 4R.oN(0)A2.o+2(1 - r)-l] 1/~ 
N(t) <~ [exp( - r /3 .o t ) ]  2R.oA2.o+2(1 _ r ) _ l  (24) 
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and consequently N(t) < const x N(0) for any t E [0, oo]. Further, it is shown 
that 

Ix/~a,(t)l < [exp(-rf i , t )]K,  

with K,  determined in Appendix C3. Notice that the above proof fails if cinr 
= 0, because R,o is not finite. It implies for 0(~c) a very complicated oscillating 
regime near x = 0, which does not occur in the practical case. Now for tt ~< 1 
we have also the previous bound, which does not require cin f and which holds 
even if Cinr --- 0. Notice also that for r /<  1, the positive increasing sequence/~, 
tends to a limit and so the time dependence for the bounds on la,(t)l tends to 
exp ( - c ons t  x t). On the contrary, for q >~ 1, the same time-dependent bound 
for la,(t)l has a coefficient/~, which tends to infinity when n goes to infinity. 

We emphasize that our conditions on N(0) are only sufficient conditions 
for the Sonine expansion to converge. Presumably, finer results may be 
obtained by less drastic majorations. But it is enough to prove that the set of 
solutions of the Boltzmann equation (BE) with convergent Sonine expansion 
is not empty, and actually is infinite. Further, in the next section we give 
arguments showing that the BE carries positivity; if we start with a positive 
distribution function with conditions (20) or (23) being satisfied, it remains 
defined and positive when time is increasing. Thus, there exist infinitely many 
positive solutions of the BE and they do not relax to the Bobylev-Krook-Wu 
distribution.(1,2) 

4.3. Some Results Concerning the Posit ivity 
Property of f(v,t) for t >~ 0 

We want to present arguments concerning the positivity of f (v ,  t) for t 
> 0 and v finite if we start with a smooth distributionf(v, 0) > 0 I f(v,  0) being 
finite for finite v values]. We assume that the possible singularity of ~b(~c) is 
only at ~c --= 0, so that 

~b(~c) sin ~c d• -- 0~o 
0 

is finite for ~c o finite but can tend to + oo if~c o --~ O. Equation (1) can be.written, 
after integration from 0 to t, 

[exp(4)Kot)]f(v, t) 

= f(v ,  O) + [exp(4~o t )][ ~o(V, t') + B~o(V, t') dt' 
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AK~, = ~ 4~(K)(sin ~c) f (v ' ,  t ' ) f(w',  t') d W  de dK 
0 

BK,, = ~ qS(~c)(sin ~) (26) 

{f?[; 3} x fly', t')f(w', t') - f ( v ,  t ')f(w, t') d W  de dK 

AK, , is not  necessarily bounded  when K o ~ 0 and if fur therf (v ' ,  t ')f(w',  t') > O, 
then A~o tends to + c~ when K o - ,  0. On  the contrary ,  due to the assumption 
~b I < oo, we see that  B~o --, 0, a l though the sign of  B~o is in general not  known.  
In the following we always assume B~,, as being negligible compared  to A~,, 
and we neglect B~o in the discussion. 

First we show that for finite v values, there exists a finite, v-dependent 
interval such tha t f ( v ,  t) > 0. For  t = 0 in Eq. (25), the bracket on the rhs is 
zero ; since this bracket is a cont inuous  t function,  there always exists a finite 
[0, t] interval where its modulus  is less t h a n f ( v ,  0). This argument  does not  
work for an infinite v value, becausef(v,  0) itself goes to zero. I f  we expand Eq. 
(25) a round  t = 0, we obtain 

[exp(r t) ~ f (v ,  O) + t[A~o(V, O) + BKo(V, 0)] + O(t 2) 

and we see that the two first-order terms are positive if f (v, 0) > 0 and B~,, 
negligible. Second, we show that the positivity proper ty  o f  f propagates  
forward in time. Let us assume f(v,  t) > 0 for t < to; then in Eq. (25) the 
bracket is positive for t = t o and there exists an interval t o + At o (v dependent)  
such that the modulus  of  the bracket is less than f (v ,  0) using continuity in t; 
the sum of  the two terms on the rhs o f  Eq. (25) leads to f (v,  t o + Ato) > 0. 

Similarly, one can show that  the nonposit ivi ty proper ty  o f  f propagates  
backward  in time and must  have appeared at a later time at v infinite. We 
assumef(v ,  t) > 0 for t = 0 and for a small At interval. On  the other hand,  we 
assumef(v  o, to) < 0. Using continuity in t of  the second term on the rhs of  Eq. 
(25), we see that there exists necessarily tl < to and v I such tha t f (v~,  tl) < 0. 
Cont inuing and always compar ing  the finite first t e rmf(v ,  0) of  the rhs o f  Eq. 
(25) with the second term, we define a sequence t 2 < t 1 < t o and v z , f (vz ,  t2) 
< O, t 3 < t z, f ( v  3, t3) < 0 ..... and we see that the only possibility is that  

a negative part  o f  J(v, t) has appeared for infinite v value at time tj~m less 
than to. 

The only escape to positivity for t > t o is the appearance o f  a negative 
part  at infinite v value. Let us assume tha t f (v ,  0) does not  oscillate for high 
velocities ; for example, f (v ,  0) decreases monotonica l ly  to zero for large v. 
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Remember ing that  B~o is small for small ~c0, we get f rom Eq. (25) 

[exp(4)~ot)][f(Va,  t) - f ( v  2 , t)] 

~- [exp((O~oto)][ f (v l ,  to) - f ( v 2 ,  to)] 

+ dt'  [exp(4~ot ' )][A~o(Vl ,  t') - A~,,(v 2, t')] 
0 

If, at t o = O , f ( v l ,  O) - f ( v z ,  0) > 0 for v 1 < v2, t hen f (v l ,  t) - f ( v  2 , t) > 0 for 
a small time interval a round  0 which depends on vl and v 2 . The same holds for 
a small interval a round  t o i f f (vx,  to) - f ( v e ,  to) > 0. So, monotonic i ty  at t 
= to implies monotonic i ty  at further times, but  the answer is not  complete,  as 
we cannot  prove t h a t f ( v 2 ,  t) remains positive. However ,  the above argument ,  
a l though incomplete,  contradicts the appearance o f  a negative tail at infinite v 
values, which would require for sufficiently large v 1 and v 2 , vl < v 2 , that  

f ( v  I , t) - f ( v  2 , t) < O. 

5. G E N E R A L I Z A T I O N  TO d - D I M E N S I O N A L  S Y S T E M S  

The above results may be extended with minor  modifications to d- 
dimensional fluids. We just indicate in this section the main differences. 

The Bol tzmann equat ion (1) now reads 

-~ (v, ~ [ f ( v ' ,  t ) f (w ' ,  t) - f ( v ,  t ) f (w ,  t)]q~a)(~c) d a W  dQ d (27) 

where S a is the surface o f  the d-dimensional unit sphere, d e w  stands for the 
integration over the d-dimensional vector W,  and 

dQ a = (sin ~c) a-  2(sin e) n-  3(sin E a) a-  4 ... (sin e a_ 4) d~c dE de 1 ." de a_ 3 

is the d-dimensional solid angle expressed as a function of  the d -  1 polar 
angles ~c, e, El,..., ea_ 3, 0 < tc, e, el ..... ea_ 4 < re, 0 < ca_ 3 < 2re, o f  the dif- 
fusion direction V ' - W '  with respect to the incidence direction V -  W. 
Expressions (1) for (v') z and (w') 2 still hold, but  the normalized moments  
M , ( t )  are defined as 

2 - " F ( d / 2 ) [ F ( n  + d/Z)] - ~ f f ( v ,  t)v 2" d a y  (28) M , ( t )  

al though the Sonine moments  b,(t)  are still given by (4), 
The p roo f  is slightly different f rom that  for the three-dimensional case, 

and is indicated in Appendix D for d > 3. For  d = 2, simplifications occur 
because there is only one polar  angle, but  the approach  is the same and we 
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shall not indicate it. We get for the M. and b. the nonlinear systems 

n 

d M .  ~, M k M . _ k B k , . C .  k 
dt k = O  

(29a) 

d 
- -  bkb , -  kBk,nCn dt b. = ~ k 

k = O  

(29b) 

w h e r e  

2re- 1/2F(d/2) 
F((d  - 1)/2) 

f / 1  x ~ q~(%c) 

2 ~ -  1/2F(d/2) 

F((d - 1)/2) 

f0 '1 x 2 q~l%:) 

sind- 2 ~C(COS 2)2"-  2k(sin 2)2k dtc 

s ind-2~c[(cos2)  2 " -  1]dK 

if k # 0  

if k = 0  (29c) 

plays the same role as Bk, . if in all equations we make the substitution 

2 ~ -  1/2F(d/2) 
qS~ - F ( ( d Z  ~ q~(~)(~) sina a K (30) 

the existence condition ~b 1 < oe being replaced by 

ff onst (~b(d)(K') sin d d~c < /r 

Formulas (28)-(30) are still valid for d = 2. 
It is known (3 6) that the function 

F(x  = v2/2, t) = (2~z)a/Z(exp �89 t) (31) 

has a Sonine expansion in powers of generalized Laguerre polynomials 
L~)(v2/2),  the coefficients being the b.. This may be seen in the following way, 
already used in Ref. 5: 

Let G(~, t) = X.~ 0 r  be the generating function. From (4), G may 
be rewritten in terms of the b. 

4" 
c(~, t) = ~ (1 - 3) "+1 b.(t) 

n>~O 
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and f rom (28) and (31), we have also 

G ( ~ ,  t )  = 2 g  e/2 v d- xf(v, t) dv ~, (�89 
k > o F(k + d/2) 

f 
oo (x~)~ 

= o dx F(x, t)e-~x (e-2)/2 k>o ~ F(k + d/2) 

Expanding  F(x, t) as Y.~>o (-)"b.(t)l.(x), where the l.(x) are yet un- 
known,  we get the condit ion 

f o  (xe)~ ~~ dx x(d- 2)/2e-Xln(x)k>o ~ F(k q- d/2) - ( -  )n (1 _ ~)n+l.  

o r  

= (_), ,  ~ ~.+t (n + l)1 

l>o n] l! 

whence(~ ~) 

where ~ is a function of  dimensional i ty 

- ( d -  2)/2 (32) 

In t roducing the constraints  of  normal iza t ion  and energy conservat ion (b o 
1, b I -= 0) and setting b,, = a,,_ 2, we get the al ternate expression for F(x, t) 

corresponding to Eqs. (6) 

F(x, t )= 1 + ~ ( -  )"a~(t)L~)+ 2(x) (33a) 
n=O 

d n - 2  
_ _  ~ ~ r  2 ( 3 3 b )  
dt a. + ~.a. = ~ ama._~_.~ =+2,.+2'~.+2 

m = O  

with ~. = - /~o, .  + 2 - -  /~n + 2,n + 2, and the system (33) is identical to (6) [fl. --- ~. ,  
Bm+z,n+2 = Bm+z,n+2] when (30) holds. 

N o w  the considerat ions of  Section 3 are unchanged,  provided the 
momen t s  q~k of  the function 4~ ~3) are now replaced by 

fi: /;/ ~k = qSce~(~c) sin e-  2 + 2k• d~c sin e 2 + 2%c dK 

f o  dX e -x l,(x) X (cl- 2)/2 +k 0 if k < n 
F(k + el2) 

= (-- )"Ck" if k >>- n 
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Expressions for the generating functions for the Laguerre polynomials were 
already written in their general form in Eqs. (11)-(12). 

Similarly, the proof  of the existence of  an infinite number of positive 
solutions of the BE holds (Section 4). Actually, the dependence on dimen- 
sionality is already included in Appendix C, where the main bounds are 
derived. The only modification appears in the behavior of ~b(tc) at small 
angles, and Eq. (18) is replaced in the general case by 

(sin to) ~- 3~,b(d)(tc) < C(sin �89 2~ 

the exponent q playing the same role as above. Again, there are infinitely many 
positive solutions of  the BE which are not generalizations of  that of Bobylev. 

6. N U M E R I C A L  C A L C U L A T I O N S  

In this section, we present some numerical results using a function ~b(~c) 
singular at the origin. We were especially interested in the study of a long-tail 
effect found by Krook and Wu(2); however, they used a truncated BE and 
their effect could have been the result of an unjustified approximation. 
However, recently, a similar behavior was observed by Tjon for a 2d fluid and 
an energy-dependent collision frequency. (8) Roughly, depending on initial 
conditions, the distribution function f (v ,  t) may relax to the Maxwell 
equilibrium function either in a monotonic way or with a tail population 
which is much more important than for f (v ,  oo): i.e., high-energy particles 
may be more numerous than in the equilibrium case, leading, for example, to 
higher reaction rates than expected. Using various initial conditions, we 
observed the transition between these two relaxation modes. Dimen- 
sionality and ~b(~c) do not seem to play a great role, but we were not able to 
characterize the precise criteria for getting one or the other behavior; 
however, we have noticed some features favorable for one mode or for the 
other. 

For our numerical experiments, we have chosen the Maxwellian case 
(po t en t i a l -  r -4 if d =  3); the diffusion angle is expressed as an elliptic 
integral (6) 

K(/ , / )  = T( - -  (1  - -  U )  1 /2  (1 + u c o s  2 0) 1/2 

d• 
~b(~c) sin ~c duu = (1 + u)u 3/2 

where u depends on the impact parameter. At small angles tc _~ u and ~b(~:) 
"-" u-5/2. More precisely, the normalized moments q5 k are 

(2k + 1)! 11 du (1 + u)u -3/2 sin 2k 
(gk - 22kk ! k ! 

K(U) (34) 
do 
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Figures 1 and 2 show the evolution in time of the reduced function F(x, t) 
for several initial conditions F(x, 0). We use expansion (6a) up to the 12th term 
a12 and integrate the truncated system (6b). In Figs. la and lb, F(x, 0)defines 
a fundamental positive solution, although in situation 2, a,(0) # 0Vn; this 
latter example was derived from the generating functions of Eq. (12) and 
we have even allowed F(x, 0) to be negative for small x values but not 
for large enough x values; F(x, 0) then has no physical meaning, though 
F(x, t) is a solution of the BE; nevertheless, positivity for all x is rapidly 

(a) 

\ / /  / 
~(x,o)= 1+o.8 L~ Ix) / / / /  . /  

, . . ) , \  ........ 
.... \ \,, iI~/ ........ ..... :..,,,~ t== ,z~ . . . . . .  

. . . . .  

~\ " ~  . . . .  " / 
~\ / /  / 

1 2 3 4 5 6 x ~" 

(b) 
F(x ,o )  = 1-0.2 L~/2(x)  

t=O 
~ 1.2 

t=~ 

~ "~ "~"" .../. / 

I I I I I I ! I 
1 2 3 /, S 6 7 x 8 

Fig.  1. Evo lu t ion  in t ime for a fundamen ta l  posi t ive  so lu t ion  and  a 3d fluid. (a) F(x, O)= 1 
+ 0.8L~/2(x). (b) F(x, 0) = 1 - 0.2L~/2(x). 
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15 

-0,5 

- 1  

-15 

Fig. 2. Evolution in time of a solution which violates positivity at t = 0 for small x values; 
positivity is already restored for t = 0.4. 

restored and in all cases F(x ,  t) -~ 1 for  long times, ensuring the Maxwell ian 
behavior  fo r f (v ,  t). These initial condit ions were already used in the isotropic 
case, ~s) but it is not  impor tan t ,  as they evolve differently. The convergence here 
is more  rapid,  ~b 1, which gives the dominan t  behavior ,  is o f  the order  of  3 (qS, 
- 1 in the isotropic case). There  is no p rob lem in extending this kind of  

calculat ion to fluids with higher dimensional i ty .  We did it for  d = 4, 6, and 
initial condit ions given by (11), but the results are similar to the previous ones 
and we do not  present  them here. 

The examples  above  cor respond to a mono ton ic  convergence to equilib- 
rium, Tjon 's  effect does not  exist in the fundamenta l  positive solution (cf. ex. 
1), since the high-energy behavior  is domina ted  by the Laguerre  polynomial  
[F(x ,  0) > 1 for  large x] ; on the other  hand,  we could expect it in examples  
following f rom Eq. (12) (cf. ex. 2), but  we did not  see it. It seems that  a 
physically reasonable  distr ibution can be character ized in the following way. 
Let us call x,, the largest zero of  F(x,  O) - 1 : 

(i) Fo r  x > x , , ,  F(x ,  0) is always less than one. 
(ii) Consequent ly ,  due to the conservat ion of  M0,  for  x < xm, F(x ,  0) will 
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in general be greater than one, but not  necessarily for all x, because F(x, O) - 1 
can have other zeros. 

We look at the way F(x, t) - ~  ~ 1 for large x > xm, either always f rom 
below, i.e., F(x, t) ~< 1 Vt e [0, oo] or f rom above:  F(x, t) >~ 1 for t greater 
than some critical value t x . In the second mode,  when t increases, F(x, t) for x 
fixed higher than x,, must  first cross the value one for t = t x and for t >~ t x 
reaches a maximum greater than one (enhancement) and relaxes to one when 
t ~--~ 00.  

In order to study the transit ion f rom one mode to another ,  we choose 
families of  F(x, 0) depending smoothly on some parameters  that  we vary 
continuously.  Al though the transition, if it exists, is obtained continuously,  
there exists for the parameter  an intermediate interval where the second mode 
is not  very visible. Moreover ,  the effect is interesting only if the enhancement  is 
appreciable. We especially focused on families o f  initial conditions generated 
f rom identity (11) with d 1 = - 1 ,  z and the other dk being arbitrary.  Tjon 's  

(al d=2 X= 2/5 

t~eo 

t=4.8 

t= l  2 ~ 

5 10 2(3 

(b) d=2 t = 3 / 5  

5 15 25 x 

Fig. 3. Study of the transit ion in the one-parameter  family (36) for a 2d gas. (a) 2 = 0.4, the 
behavior is similar to that  of  the previous examples. (b) 2 = 0.6 (transition region), the last zero 
moves to the right. (c) 2 = 0.9, nonun i fo rm relaxation mode.  (d) Plot of  F(x, t) as a function of  t 
for several values of  x at 2 = 0.4 (case a) and 2 = 1 (case c). 
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(c) d=2 ,~=09 T ~ FMax 
( t )  

1,5 

0.4 2. 3.2 t 

t = 2._~4 - -  

k V /  t=~ _ 

10 20 x 

1s 

1 
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Fig. 3. Continued. 
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effect may  be seen when the exponential decrease is not too large and is still 
slowed by a polynomial with large coefficients. The existence of  two extrema 
seems to be important,  since this mode  o f  relaxation does not exist in families 
(12) nor in the B K W  family. For the latter case, this can be proved analytically 
in a simple way:  the B K W  similarity solution reads 

[ ( z )][ z 
- - - x  1 - (~ + 1) + (35) F(x, t) -- (l _ z) ~+1 exp 1 - z  1 - z  (1 

where z = z(t) = z(O) e x p ( - # g t t / 6  ) and F(x, O)is a peculiar case o f  family (11) 
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with d k = 0 Vk ~> 2 and 0 < z(O) ~< 1/(2 + e). I t  is enough to prove that  F(x, t) 
~< 1Vt if x > 5 + 2a;  setting x = 3 + ~ + 2, we rewrite F(x, t) as 

~ e x p { -  [(3 + a)/(1 - z)]z}} 
F(x, t) = ( -z)3+ 

x exp 1 - z 

The first bracket is always less than 1, and so is the second bracket for ~ > 2 
+ c~, whence the result. On  the contrary,  the effect exists when we introduce a 
second coefficient d2, but no compact  form is possible and the results are 
numerical.  

A typical example is the family (for a 2d gas) 

12x41 0 < 2 < 2.27 (36) F~(x, 0) = e-X[1 + �89 + 2x2(1 - 2) + ~ j, 

where z = 1/2, d2 = �89 + 2, d 3 = - 2 ,  d 4 = 2/4; with 2 fixed, Fx(x, t) has two 
extrema and three intersections (zeros) with F(x, oo) - 1 (Fig. 3). When  2 
< 0.5, the abscissa o f  the extrema and zeros are stable as time increases and 
F(x, t) goes uniformly to 1 (Fig. 3a). At 2 -~ 0.5, the largest zero begins to 
move to the right when t--+ oe, the other characteristic features being 
unchanged  (Fig. 3b). At 2 = 0.7 and greater, both  the largest zero and the 
max imum go to infinity and the width o f  the b u m p  becomes larger and larger 
(Fig. 3c) to preserve the correct normal izat ion ~o e-XF( x, t) dx = 1. The 
convergence to 1 is no longer uniform, as can be seen by plott ing F(x, t) for a 
given x as a function of  t (Fig. 3d). In the subcritical region 2 < 0.5, F(x, t) 
goes monotonica l ly  to 1 when time increases, f rom below or above. After the 
transition, two cases occur :  either x < x,,, in which case F(x, t) goes 
monotonica l ly  to 1 when t ~ oo ; or  x > xm, and F(x, t) passes through a 
maximum at intermediate t before decreasing to 1. Practically, there exists a 
transit ion zone (0.5 < 2 < 0.7 here), since the deformat ion seems to be 
cont inuous.  

We found the same effect in the family 

F.(x, O) = e- ~ + ~ / x + ] ~ x  ~ 21# + ~ # x  ~ (37) 

with z = 1/3, tt = d4/64, and for a three-dimensional fluid, the transition zone 
being 0.20 < d 4 < 0.25 (Fig. 4). Another  example o f  the same behavior for d 
= 4 (or c~ = 1) is given by the family (Fig. 5) 

Fv(x, O) = ( 5 ) 2 e -  2 x / 3 [ l  - 9v + (5x)2(1 --I- 5v) - Iv(5x)5]  (38) 
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(a) 1] t =0 

/ t = 0 4  
d=3 d,=0.3 / / ~  t=0.8 

los / /  ~ t=1,2 
/ / / ~ '~ /t=1.6 
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(b) 

\ d=3 d 4 =0.3 
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1. 
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0.8 

J 

O, 2 4 6 t 

Fig. 4. Study of  the effect in family (37) for a 3d gas. (a)Plot  of  F, (x ,  t) for several times above the 
critical value (d 4 = 0.30 or/1 = 0.0047). (b) Plot of  Fu(x, t) for d 4 = 0.30 as a function of  t for 
several values of  x. 
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1.5 

(a) 

d=4 d5 =-0.17 

0 5 10 - -  15 20 3 O  

(b) 

1.5f -- d =4 d5=-017 

I I l I I 

04 2 4 6 t 

Fig. 5. The same as Figs. 4a and 4b, but  for family (38) and  a 4d gas ;  here ds = - 0 . 1 7  (or 

v = - 0,0224). 

(2-~5d v < 0, the t ransi t ion zone being approximately with z = 2/5, v = t3~ 5, 
- 0 . 1 5  < d 5 < - 0 . 1 2 .  

The t ransi t ion may be systematically, but  numerical ly,  studied in the 

simplest case dl = - 1, d~ = 0, k />  3, z and d 2 arbi trary.  Figure 6 corresponds 
to d = 2, or ~ = 0; the positivity condi t ion  delimits a region in the (z, d2) plane 
and the t ransi t ion zone is a band ,  roughly 1.2 < d 2 < 1.5, which does not  seem 
to depend much on z. No effect exists for z > 0.55. 
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d2 

~ ' . . . . . .  ; ; ; ; i ; .  d=2 

2 

1 

510 - i  

210-; 

10 -1 a 1 i I 

0.05 0.1 03 O.S 0.7 z 

Fig. 6, Study of the critical zone in the (z, d2) plane. The curve is the limit for positive initial 
conditions�9 The transition region is the dashed band, approximately 1.2 < d 2 < 1,5; the effect is 
quite apparent in the dotted region, 

A P P E N D I X  A 

A1. Proof  that X(q, q', n) - 0 unless q + q' = n. We h a v e  

2(q,q ' ,n)--  n! ~, ( - 1 )  p -2(p,q,q'! 
q' (q')! (n ~-p)! (p ~ q ~ ) !  �9 p=q+q' 
p--q--q' 

-~(p, q, q,) = ~ k Bk+q,pCp-q-q, 
k = O  

W e  first c o n s i d e r  q :# 0;  w i t h  the de f in i t ion  o f  B~,, ,  Eq .  (3), we  o b t a i n  

I f  l K~2q( . 2)  2q' 4,(,<:)sin,<:tcosT- ) t sln 

X ~ P - ~ - q ' ( c o s K ~ 2 ( p - q - q ' - k ) l  . K 2k k 
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Note that the sum in the bracket is 1 and substitute into 2: 

n! 1 i~b(/r x(cos l~c)2O7(sin �89 2q' 
- q! (q')! (- l)q+q'  2 J ~ q  -~ q-~-! 

n--q--q" 

x ~ (-1)VCLq_q,d~c-O if n r  
p=O 

Second we consider q = O, 

1 f~?(~)sin~I_l+(cos2)2r k q,Idtc 
~ : o  2) Cv- 

Note that the sum over k gives 1 and 

; (  )-+ _ n! ( -  1)~ ~c 2q' 
2 q! 2 ~b0c) c o s - ~ - - 1  ~ (-1)PC~ q, dK=-O if n r  

p=O 

A2. Derivation of Eq. (5b) using only sonine moments. Replacing 
f(v, t) by its expansion (5a), we get 

d b,(t)L(,U2)(v2) 
n>~0 

1 Z Z (-l)"+"'bm(t)bm '(t) 
4n m~O m'>~O 

W 2 

x f dW f c~(~c) sin ~c dK & e x p ( - - f  )(2n) - 3/z 

U 2 W 2 

x L= k ~ ) = '  k-~-) = t j ) = '  kT)J 
Multiplying both sides by s exp(-v2/2) and integrating over V, we 
get 

db, 1 
( -  1)" ~/- 2. = ~- ~ o  =~o ( -  1)"+"~'bm(t)b"'(t) 

r rdv ew 
• <p(K) sin ~: dK de ~ ]  ( ~ - ) ~  

I 2 ~2 2 

x exp 2 _J-" \2-J " \ 2 J  
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where 2, is the normalization factor for the L(n 1/2). We perform the integration 
over e and 0 (angle between V and W), using the identity 

(4re) l f f s i n O d O f ~ = d e L ~ . l / 2 ) ( ~  2-) 

I [L  ' -  1/2'//1 - w sin }- =(vwsinK)-~_  .+1 \2  v c o s ~  

~,+1 \2  v c o s ~ + w s i n  

From the definition 

d" 
n! Lp~(x) = eXx ~ - -  (e-~x "+~) 

dx" 

and orthogonalization relations for the Laguerre polynomials, we verify that 
the summations on the rhs reduce to the m, m' such that m + m' = n; Eq. (5b) 
is then straightforward. 

A P P E N D I X  B 

BI. We determine the expansions of the Bin,. in terms of the ~)p. F r o m  the 
definitions (3)-(8) we obtain if m < [n/2] - 1 

1 ('re s i n  t~ 2m + 5 

Bm+2'n+2+B"-m'n+2=2 Jo dKqS(tQ 22m+ 4 P._zm_2(sinK) dK (B1) 

/ K~Zq + (sin 

[o/2] sin K 2p q [ (q - p - 1) [ 
= ~ ( - 1 )  p (Be) 

o 2 2p p! ( q - 2 p ) !  

with [q/2] = q/2 ifq is even and [q/2] = (q - 1)/2 ifq is odd. Substituting the 
expansion of Pn-2m-2 into the rhs of (B1) and taking into account the 
definition (7) of the q~., we obtain the result (8). Since ft. is equal to 
�89 ~ ~b(~)(sin ~)(1 - P.) d~c, we must subtract the constant term equal to 1 in 
the expansion (B2) of P.. Consequently ft. can be obtained from the 
expression (8) for Bm+ 2,. + 2 + B._,.,. + 2 where we subtract the first term for p 
= 0. Finally, if n is even, 

B./2 + l,.+ 2 = 2-" -  2[l  f (o(~:) sin ~"+ 2 dK 1 

and we apply the definition of the q~p, Eq. (7). 
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B2. We want to prove ft. + ft. m-2 - ft. > 0 Vm ~ [0, n - 2] or 
equivalently f rom the definition o f  tip and putt ing u = (1 - cos K)/2, qS(~c) 
= ~(u) ,  

f j  du + + (1 - - 
un+2 U) n+2 U m+2 

- ( 1  - u )  m + 2  - u " - m  - ( 1  - u ) " - ' ]  > 0 ( B 3 )  

Let us denote the bracket by z(u). It is sufficient to show that z(u) > 0 for 
u 6 [0, 1] and m ~ [0, n - 2], n >~ 2. We obtain 

n - m - 1  
dZ_u{1 u) ( m + 2 )  ~ [(1 u) m+~ u re+k] 
du k=O 

m+l t + { n - - m )  ~ [ ( l - u )  ~ - " + k - 2 - u  "-m-k-2] 
k=O 

a n d  z ' (~-)= O, z'(u)> 0 for  u < 1; z'(u)< 0 for  u > �89 It follows that  

z(u) >1 z(O) = O. 

A P P E N D I X  C 

In this appendix we always consider the normal izat ion 2n associated with 

.+2,  ~/> 0, 
2. --- F(n + 3 + c0/F(n + 3) (C1) 

C1. Bound on [2 . (2 , .2 . -m-2)-  111/2, m ~ [0, n - 2], n >/2. We define 
6. m - 2,.2._.,_2 and remark that  for n fixed, p < (n - 3)/2, 6 / i s  increasing, 

6. p _ 0~+1 _ eF(n - p  + e)F(p + 3 + ~) (2p + 3 - n) 
F(n - p  + 1)F(p + 4) 

It follows that  6. m >t c5. ~ and finally 

2~2 . -~  ~ ~<A. L ( n + l ) ( n + 2 ) F { ~ + 3 ) J  (C2) 

C2. Bound on N(t)=~.~.ola.(t)12~/2 /f  qb(~c)< (sin�89 -z .  We start 
with the representat ion (9b) o f  the solution a.(t) with the initial values a.(O), 
note f rom (19) that  n ( - , m + 2  , - m  , �9 _.,.+2,.+2.~.+2 < (m + 2) -1 multiply both sides by ~1/2 
take the modulus  o f  both  sides, and bound  the rhs:  

n ~< 2n o + 1: [x/&.a.(t)[ = Ix/~.a.(0)[ e x p ( - f l . t )  

n > ~ 2 n o + 2 "  [x/~.a.(t)[ <<. [exp(-fl.t)][la.(O)x/-~.l + fl Eexp(fi.t')]x/~. 

x ~ (m + 2)-lla.,(t')llap(t')l dt'[ (C3) 
m + p = n - 2  A 
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From  (C2) and the substitutions ft. -~ fl ..... (2%/2m2p) 1/2 --+ A.,  and 

AJ(m + 2)-- .  A2.o+2/(m + 2 ) -~  A2.o+2/(n o + 2) 

we obtain upper  bounds on the rhs of  (C3). Summing over n, we find a 
nonlinear inequality : 

A2no+2 [~1 
N(t) exp(fi.ot) ~< M(t) = N(0) + - -  NoZ(t ') exp(fi.ot') dt' 

n o + 2  )o 
which we integrate as in Ref. 5. We obtain:  if 

N(O) <~ [3.o(n o + 2)(A2no+2) -1 

N(O)fl.o(n o + 2) N(t) <. 
A2no + 2 

x { U ( 0 ) +  [fi,,o(n o + 2)(A2.o+2) -1 - N(0)] exp(fi,,ot)} -1 (C4) 

Notice that  i f~ /=  1, ft. ~ log n, al though Bm+z,n+2Crn n+ff remains bounded.  If 
we do not  consider 2. and perform the same analysis, we obtain an upper  
bound  for • [a.(t){ (where A. disappears) if 

la.(0)l < (no + 2)/~.o 

Returning to (C3), where 

Z (rn + 2)-  ~la,.I lapl < (no + 2) -1 [ Z  la.( t')t]2 

and using the bound  for y [a.I, we can integrate and obtain directly a bound on 
la.(t)]: 

(no + 2)afi~o [exp( - 2fl.ot) - exp( - rid)] 
[a.(t){ <<. [exp(-fl.t)]la.(O)( + [fl.o(n o + 2) - 2 IG(0)l]2(fl,, - 2fl,,o) (C5) 

C3. Bound on N(t) zf q < 2. We start with the representat ion (9b) of  
G(t), assume that qS(•) satisfies the bound (18'), and introduce r, 0 < r < 1, 
and R,,o defined in (22). We obtain 

n ~< 2no + 1" 1~/27~a.(t)l < {x/~.a.(0)[ exp(- r f i , , t )  

n ~> 2n o + 2: [../~a.(t){ < [exp(-fl,,t)]{lx/-~.G(O)[ + A2.o+2 

fo x exp(fld' ) ~ lam(t')x/~l fap(t')x~p I 
m + p = n - 2  

m >~ no 

r-m + 2~ dt'~ (C6) X , . . . n + 2 ~ m + 2 , n + 2  ) 

then 
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We want  to show that  la.(t)x/~.l < [ e x p ( -  r[3.t)]K., where K. is the solution 
of  the recurrence equat ion 

Azno+2Rno 
K~ = }a.(0)lx/2~ + ~ 7 r  ~ K.~Kp (C7) 

m + p = n - 2  

This is true for n ~< 2no + 1. For  n >t 2no + 2 let us show this relation by 
induction and assume it holds for p = no, n o + 1 ..... n - 2. We obtain  f rom 
(C6), (C7), and (22) 

[x~.a . ( t ) [  - [ e x p ( -  fl.t)]x/~.[a.(O)[ 

fo A2,,o + 2 m~ d t '  m+2 K m K n  m-  2Cn+ 2 Bm+ 2,n+ 2 

• exp[(fl.  - trim - rfim . - 2 ) t ' ]  (C8) 

Fur ther ,  

f l . - r f lm-r f l ._m_ 2 = ( 1 - r ) [ 3 . + r ( f l . - f l m - f l ~  m - z ) < ( 1 - r ) f l .  

and if we integrate the rhs of  (C8), taking into account  (22), we see that  it is 
bounded  by 

A2no+ 2Rno(1 - r) -1 E KmKn_m_ 2 
rn 

and (C7) holds for n. It  follows that  

N(t) <~ ~ [exp(-rfl.t)]K. <<. [exp(-rfi~ot)] ~ K. 

Let us define J f  = ~K. .  F r o m  (C7) we get 

.3(( = N ( 0 ) +  Az.o+zR.o(1 - r ) - 1 ~ / ' 2  

and 

N(t) % [exp( - r f i .o t ) ]{1  - [1 - 4A2no+2N(O)Rno(1 - r ) -111/2 

• [ 2A2 .o+zR.o (1 -  r) 1] 1 (C9) 

with the sufficient condit ion 

[a.(0)lx/~. . = N(0) ~ (1 - r)(4Az.o+2R.o) -1 (C10) 

We note that  the K .  can be explicitly determined.  We define 

J{'(z) = ~ K~z", N(t = 0, z) = ~ [a.(0)x/-~.lz" 

and assume that  (C10) holds. I t  follows that  N(t = O, z) is an entire series with 
a finite radius of  convergence.  Then K .  can be determined f rom the expansion 
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near z = O: 

]1/2~ 

x [ 2 A 2 . o + 2 R . o ( 1 - r )  1]-1 

199 

( C l l )  

A P P E N D I X  D. 

P r o o f  o f  the m o m e n t  equat ions (29 ) fo r  d > 3. Multiplying the BE (27) 
by 2-"P(d/2)[P(n + d/2) ] - '  v ~" and integrating over V, we get 

d 1 - " F  F + ~ M .  = - - 2  n 
Sd 

x f f d d V d d W d a d ( a ( d ' O Q f ( v , t ) f ( w , t ) [ ( v ' ) 2 " - - v 2 "  ] (D1) 

~,Lere integrations on V, W, and d~  d are now d-dimensional and 

1 + cos ~ 1 - cos 
(V ' )  2 = U 2 + W 2 + VW sin K sin 0 cos e 

2 2 

where 0 is again the angle between V and W. 
The angular  dependence o f  V can be removed,  giving a multiplying 

constant  Se, and that  for W is reduced to the polar  angle 0 ; integrating over 
the d - 2 other  polar  angles, we get 

f d d W f ( w ,  t)[(V') 2" V 2"] 

= dw w d- i f (w,  t) sin d-2 0[(v') 2n - v 2n] 

Similarly 

f df~a[(v') 2" - v 2"] 

fo ; = qTa)(~c) sin e_ 2 t~ &: 

27rd - 1/2 

FE(d - 1)/2] 

s i n d - 3  E[-(U,)2n __ /.)2hi Sd ~/-d-n \2 1) 
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whence 

d all2 -- 1 7.gd- 3/2 f r  

dt  M .  = 2n_2 r(r l  q- d/2)F[(d - 1)/2] J 0  O(a~(~c) sina 2 K dK 

x v d if(v, t) dv w"- if(w, I) clw 

x ; f s i n d - 2 O f f s i n e - a e [ ( v ' ) 2 " - v  2"] (D2) 

The last two in tegra t ions  are easily pe r fo rmed .  F r o m  

(/),)2n ~-- (/)2 1 -I- COS K7 
2 + w2 

\ 

1 - cos K 
+/)w sin ~: sin 0 cos ~)~ 

= ~ r 1 7 6  
k=o 2 + w2 

1 --  COS h: \ n - k  
-] (vw sin ~c sin 0 cos  e) k 

2 / 

and  

sin d - 2 + l 0 dO cos ~ e sin n - 3 e 

= 0  if l is odd  

r ( 1 / 2 ) F ( d / 2 -  1 ) F [ ( / +  1)/2] 

F [ ( / +  d) /2]  
if  l is even 

we get, expand ing  

t 
tn_k v2 1 + c o s K  1 - c o s K .  

2 + w2 2 

in powers  of  v, 

dO sin n- 2 0 de sin d-  3 ((U,)2n 

[n/2] n-2k // K \ 2 j + 2 k  
E p2k(~2k ~ 2) _ _ .  ~ c { _ ~ v  ~j+~' cos 

k=0 j=0  

/ . K \  z ' - z k - 2 '  F(I/2)F(d/2 - 1) r (k  + 1/2) 
x w a " - Z k - 2 t ~ s m 2 )  F(k  + d / 2 )  
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Setting m = j + k and reordering,  we have 

fo dO sin 0 d- z de sin d- 3 ~[(v,)z. _ vZ.] 

= 7[.~,Qd 1)  "~0  C n " i ( c o s  1(7 ~ 2" / . -2m VS'"e/" 
inf(",.- m) 1 1 m ! (n - m) ! 

yK u2mw 2n- 2 "  Z k I F(k + d/2) (m - k) T (n - m - k)!  
k=0 �9 

This latter sum is actually the hypergeometr ic  (11) 

1 (  d )  F(n + d/2) 
F(d/2) 2F1 - m , m - n ; ~ ; 1  = F 0 n + d / 2 ) F ( n - m + d / 2 )  

Collecting all these results, we get 

fO~O u2m+d 1 
d 47r(d- U/2F(d/2) L C. m F(m + d/2) f (v ,  t) dv 

M .  = 2"Fr(d - 1)/2] m=0 

~ oo w2n-2"+d-  i 
X o F(n - m + d/2) f (w ,  t) dw 

X q~e)(K) sin a-2 ir cos 2m K K o 2 sin2. - 2,. --2 -- 6"0 

whence we obta in  Eq. (29a) using again definition (28) of  the M. .  Equat ion  
(29b) for  the b. is then derived as in the d = 3 case, using Eq. (4), which is 
independent  o f  the dimensional i ty  (Appendix A). 
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